

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-14-31184
PREPRINT

AUTOMATED, HIGHLY
ACCURATE
VERIFICATION OF
RELAP5-3D

Proceedings of the 22nd International
Conference on Nuclear Engineering
ICONE22
July 7-11, 2014, Prague, Czech Republic

George L. Mesina
David L. Aumiller
Francis X. Buschman

July 2014

 1 Copyright © 20xx by ASME

Proceedings of the 22nd International Conference on Nuclear Engineering
ICONE22

July 7-11, 2014, Prague, Czech Republic

ICONE22-31153

AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

George L. Mesina
Idaho National Laboratory

Idaho Falls, ID, USA

David L. Aumiller
Bettis Laboratory

Pittsburgh, PA, USA

Francis X. Buschman
Bettis Laboratory

Pittsburgh, PA, USA

ABSTRACT
Computer programs that analyze light water reactor safety

solve complex systems of governing, closure and special
process equations to model the underlying physics. In addition,
these programs incorporate many other features and are quite
large. RELAP5-3D[1] has over 300,000 lines of coding for
physics, input, output, data management, user-interaction, and
post-processing. For software quality assurance, the code must
be verified and validated before being released to users.
Verification ensures that a program is built right by checking
that it meets its design specifications. Recently, there has been
an increased importance on the development of automated
verification processes that compare coding against its
documented algorithms and equations and compares its
calculations against analytical solutions and the method of
manufactured solutions[2]. For the first time, the ability exists
to ensure that the data transfer operations associated with
timestep advancement/repeating and writing/reading a solution
to a file have no unintended consequences. To ensure that the
code performs as intended over its extensive list of
applications, an automated and highly accurate verification
method has been modified and applied to RELAP5-3D.
Furthermore, mathematical analysis of the adequacy of the
checks used in the comparisons is provided.

INTRODUCTION

The state-of-the-art nuclear reactor system safety analysis
computer program developed at the Idaho National Laboratory
(INL), RELAP5-3D, continues to adapt to changes in computer
hardware and software and to develop to meet the ever-
expanding needs of the nuclear industry. To continue at the
forefront, code testing (Verification and Validation) must evolve
with both code and industry developments.

A form of validation testing, Developmental Assessment[3]
(DA), is applied to validate RELAP5-3D performance for
generic nuclear safety analyses. DA checks RELAP5-3D
calculations against analytical solutions, separate-effects and
integral tests, and whole plant data. First performed in 1990,

each new RELAP5-3D code release is reevaluated with DA.
Verification checks coding against its documented algorithms
and equations and compares its calculations against analytical
solutions and the method of manufactured solutions. While
traditional verification performs these checks and comparisons
for every code release, sequential verification performs
checking only for the original code release but continually
compares calculations between consecutive versions on the test
cases. If unexplained differences are not detected, the new
release is sequentially verified. During its life-cycle, RELAP5-
3D has employed sequential verification, expanding its test set
with each new feature and capability. As the test set grew and
greater fidelity was sought, the ‘diffem’ utility was developed
that, for every input file in the test set, performed a character-
by-character comparison of the output files of two versions of
RELAP5-3D. Thus every difference recorded on the printed
output files was automatically detected.

This method has deficiencies. Differences in calculations
between two versions may go undetected because insufficient
decimal digits are recorded on the output file. Additionally,
code changes that are intended to modify results can cause
unintended changes to physical models that are missed in the
verification process. Analysis shows that some code features
and capabilities, including restart and backup, were not
checked by existing test suites.

To address these deficiencies, state-of-the-art verification
techniques[2] have been adapted and extended to the RELAP5-
3D code. The method provides sufficient coverage by creating
a comprehensive verification test suite. A new verification file,
that compresses key data onto small disk files to improve
detection, has been developed for RELAP5-3D. The method’s
null testing compares the verification files of two different
code versions for the same test case. It extends the original
scope of verification when applied to a single version to test its
restart and backup processes.

The results of implementing and analyzing this method are
presented. Section 2 explains the detection of differences and
the new verification file. Section 3 details the coverage of code

 2 Copyright © 20xx by ASME

features. Section 4 defines the Tests/Features Matrix that
visualizes coverage. Section 5 discusses null testing. Section 6
explains restart testing and summarizes the resulting code
improvements. Section 7 discusses backup testing. Section 8
explains the method’s programming and automation. Section 9
statistically analyzes this form of testing.

NOMENCLATURE
H0 Null Hypothesis
H1 Alternative Hypothesis
N Number of test cases
P Probability function
S Size of the verification file
T Temperature
Tr Trip
UP User-reported Problem
uf Liquid internal energy
ug Gas internal energy
Vf Velocity of the Liquid (Fluid)
Vg Velocity of the Gas
X Random Variable for the Hypothesis Test

that two runs are identical
Xa Noncondensable Quality
Xi Random Variable for Test Case i, the ith input

deck.
Y Control Variable

 significance level of a hypothesis test
g Void fraction of gas
 Probability of committing Type II error t
p Pressure Drop
t Timestep for Hydrodynamic Advancement
tkin Timestep for Neutron Kinetics Advancement
 Sum of RELAP5-3d estimate errors
 Neutron Flux
b Density of Boron

DIFFERENCE DETECTION AND VERIFICATION FILE

Detection of any difference between runs of an identical
input file by two different versions of RELAP5-3D can be
guaranteed by writing all data in RELAP5-3D memory on a
binary file and comparing them. This is impractical and costly:

A. Since modeling detail and number of writes control the
size of the output file, it can grow without bound.

B. Such writes can greatly increase code runtime.
C. To guarantee detection, every new variable added to the

code must be added to the write statements.
Even with powerful compression techniques, a user could

inadvertently overfill disk space. Two principle ways to reduce
size are to restrict the frequency of writes and reduce the data
written. Towards this end, consider that there are three major
categories of data/variables:

1. Primary variables from the five physical phenomena:
heat transfer, thermal hydraulics, neutronics, controls
and trips. See Table 1.

2. Secondary variables derived from primary variables and
used in constructing the set of equations solved for the
primary variables on the next advancement.
E.G. heat capacitance, enthalpy, power.

3. Output-only variables. Do not feed back into primary or
secondary variables. E.G. water packer count.

Table 1. RELAP5-3D Primary Variables

Quantity In
manual

On file

Pressure p P
Liquid internal energy uf Uf
Gas internal energy ug Ug
Void fraction of gas g VOIDg
Noncondensable quality Xa QUALa
Density of boron b Boron
Liquid velocity Vf Vf
Gas velocity Vg Vg
Heat Structure Temperature T Temp
Neutron flux Flux
Timesteps sum t, tkin dtsum
Trips Tr Trips
Control system value Y Cntrl

If a primary variable is different between two calculations,

variables in category 2 and 3 that are derived from it will also
differ. If a secondary variable differs, it will affect the equations
of (at least) one primary variable and thus its value when the
equation is solved. Differences in output-only variables do not
affect category 1 or 2 variables. Writing every category 1 and 3
variable on the file would guarantee that every difference is
detected, but issues A and C remain.

Writing only Category 1 variables eliminates issue C, but
allows a few differences to escape detection. To overcome issue
A, the L1-norm of each primary variable is written on the
verification file. The TH system solution and RHS are included
to aid debugging, and sums of appropriate output-only
variables, namely error measures, reduction counts, and backup
counts, are included to further reduce the possibility of missing
differences. Sums are calculated in quadruple precision to
preserve the first 32 decimal places[4] of the L1-norm and are
written in both scientific notation and z32 hexadecimal so that
all bits of the sum are represented.

The information written to the verification file on a given
advancement is referred to as a verification kernel. Kernels are
numbered and record the advancement count and cumulative
time. Input cases are numbered and their titles are recorded.
Each kernel is smaller than 1.4 KB. Writes to the file are
terminated when it reaches 1 MB. Activation, frequency and

 3 Copyright © 20xx by ASME

duration of kernel output are controlled by input. In addition to
its use in the automated verification process, the kernel
information can facilitate debugging. A sample verification file
with 1 input case and 2 kernels is shown in Fig. 1.

The small size allows storage of many such files for future
comparison; therefore unique internal identification data is
necessary, including: code version and compile time, date and
time of run, CPU time, and name of the computer on which the
case was executed. This ID data should be ignored when
comparisons are made.

Figure 1 Example of a Verification File

CODE FEATURE COVERAGE

Rather than traditional coverage, which determines the
percentage of lines of code exercised by a test suite, each code
feature used in the modeling of nuclear power plants must be
tested for sequential verification. Since so many features exist, a
judgment was made to initially exclude those not used at all in
the DA and other test suites or rarely used for nuclear power
models. Therefore, coverage is not 100% of all code features,
but important capabilities are verified.

Important categories of code features and models include:
hydrodynamic components, volume and junction options, heat
structure types, correlations, boundary conditions, trips, tables,
control variables, reactor kinetics, fluids and Appendix K. User
choices affect the way the code operates and are also included:
certain card-1 options, time advancement schemes, solvers, and
several others. Among excluded features are: most fluids and
card-1 options, debug and special output control, and the
mechanistic GE separator component.

FEATURES TESTS MATRIX

The verification test suite is comprised of 43 input decks
that test the selected features. Most of these have multiple cases
which vary one feature, e.g. heat transfer mode. If a feature is
tested in one kind of component, it may not be tested in another.
For example, if CCFL is tested in a pipe, it need not be tested in
valves. Input decks include problems with analytical or well-
known solutions, such as, control variable functions that have
exact mathematical valuations.

The actual Features Tests Matrix[2], with over two hundred
rows and 46 columns, is broken into 6 sub-tables; one is shown
in Figure 2.

Figure 2. Sub-table 1 of the Features Tests Matrix

The Features Tests Matrix organizes and displays the
features tested by individual input decks. With exceptions in
columns 1–3, the columns correspond to input decks and the
rows to single features. An “X” means the feature in the
corresponding row is tested by the input deck named at the top
of the column. An “X” in column two indicates the feature is
tested by at least one member of the suite of cases, while an “X”
in column three indicates that it is restarted.

 4 Copyright © 20xx by ASME

Features that are not tested have blanks in columns 2 and 3
and are marked in purple text, as shown in Figure 2. With over
9200 cells in the table, manual construction requires a great
deal of time and checking, so large portions of the construction
are automated. To aid matrix construction, RELAP5-3D writes
helpful information for building the matrix on the printed output
file when verification is active. Even so, sections manually
prepared may not mark every input deck that tests a given
feature. Automation becomes more important as addition of new
input and code features requires the matrix to be rebuilt.

The verification tests are summarized in Table 2. Each test
resides in a directory named in column 1 that contains input and
auxiliary files. The base input file has the same name as the
directory, but with a “.i” extension. The verification file will
have the “.vrf” extension.

Table 2 Verification Tests and Descriptions
Test ID
(# Cases)

Description

3dflow
(18)

Simulates 3-D flow of single-phase liquid, single-phase vapor, or
two-phase flow in a 3x3x3 Cartesian grid with either 1-D or 3-D
momentum equations.

ans
(9)

Tests decay heat options with the point kinetics model, fission
power types, fission product types available with each ANS
standard, and the G-factor contribution to the decay heat.

boronm
(4)

Tracks a square wave in boron concentration through a constant
area pipe with and without Godunov method.

crit
(4)

Tests Ransom-Trapp and Henry-Fauske critical flow models for a
range of stagnation conditions including subcooled, two-phase,
and superheated in a small horizontal pipe. Also tests cases with no
choking allowed and homogeneous flow.

cyl3
(1)

Tests the metal water reaction model for steam flowing past the
right surface of a cylindrical heat structure.

duklerm
(5)

Tests the CCFL model using Dukler-Smith air-water countercurrent
flow data. Wallis, Kutateladze, and Bankoff correlations are tested.

eccmix
(1)

Models a portion of the cold leg of a typical PWR during ECC
injection.

edhtrkm
(5)

Edward’s pipe simulates a rapid blowdown of a pipe. Includes
extras: reactor kinetics, heat structure cosine temperature
problems, and all control variables types, but shaft. Cases use
fluids: h2o, d2o, h2on, h2o95, hen, and an air/water mixture.

eflag
(2)

Simulates blowdown of one vessel into another to check the effect
of the e-flag on the thermodynamic state in the downstream
vessel.

enclss
(1)

Steady-state calculation of a graphite stack using the heat
conduction enclosure model.

fric
(14)

Tests various single-phase wall and junction friction models. Cases
include turbulent flow with and without heated wall effect, laminar
flow with and without shape factors, abrupt area change options,
and user input equations for wall and form friction.

fwhtr (1) Represents a tube-in-shell feedwater heater.
gota27
(1)

Simulates rod-to-rod radiation in a 64-rod bundle in low-pressure
steam using radiation enclosure model.

hse
(3)

Simulates two-phase flow through a horizontal tee with offtakes
coming off the top, bottom, or side face of the horizontal pipe.

httable
(3)

Simple model of a pipe and heat structure exercising structure BC
related to heat flux and heat transfer coefficient.

httest
(9)

Simple model of a pipe and heat structure that varies IC and BC to
achieve various heat transfer regimes for heat transfer packages 1,
111, and 134. Also tests the non-equilibrium volume option.

hxco2m Models a once-through heat exchanger with PbBi on the shell side

(2) and supercritical carbon dioxide inside the tubes. Tests the normal
and alternate heat structure-fluid coupling models in steady-state.

jetjun
(2)

Simulates insurges and outsurges of liquid into a pressurizer with
and without the jet junction model.

jetpmp
(1)

Tests jet pump performance over a range of suction and driveline
flows.

l31acc
(1)

Represents the accumulator response during a slow
depressurization during LOFT Experiment L3-1.

l2-5-emA
(1)

Tests Appendix K options during a LOFT Experiment L2-5, which
simulates a loss-of-coolant accident initiated by a large break.

neptunus
(2)

Models pressurizer insurge/outsurge experiment with spray.

pack
(4)

Vertical fill problem tests water packing model when subcooled
liquid is injected into superheated steam from below. Uses semi-
and nearly-implicit timesteps.

pitch (1) Tests an inertial check valve with movement.
radial
(1)

Models pure radial, symmetric flow problem in a 2D hollow
cylinder. There is no azimuthal flow.

rcpr
(1)

Tests the performance of a recompressing compressor in a
supercritical CO2 cycle.

refbun
(1)

Tests two-phase flow and heat transfer with horizontal and vertical
bundles that exercise the Groeneveld and PG CHF correlations and
correlations for narrow, rectangular channels.

regime
(22)

Tests the standard horizontal and vertical flow regimes by adjusting
flow boundary conditions through a simple pipe. Both the pre-
CHF and post-CHF regimes are tested for the vertical pipe.

rigidbody
(1)

Models pure azimuthal, symmetric flow problem in a 2D hollow
cylinder. There is no radial flow.

rtheta
(1)

Models flow in a 2D hollow cylinder with symmetric flow in both
the radial and azimuthal flow directions.

rtsampnm
(1)

Based on typpwr, tests radio-nuclide transport model and the axial
heat source options using nodal kinetics.

rtsamppm
(1)

Based on typpwr with uses point kinetics, tests various axial heat
source options, including those from tables, control variables, and
reactor kinetics. Tests the radio-nuclide transport model too

slab3
(1)

Tests the metal water reaction model for steam flowing past the
right surface of a rectangular heat structure.

sphere3
(1)

Tests the metal water reaction model for steam flowing past the
right surface of a spherical heat structure.

state
(24)

Tests various fluid states, including subcooled liquid, two-phase,
superheated vapor, high-pressure liquid, high-temperature vapor,
and supercritical, for h2o, h2on, d2o, and new helium.

todcnd
(1)

Models heat transfer from hot wall with the reflood and two-
dimensional heat conduction models.

turbine9
(1)

Multi-stage steam turbine with moisture separation. All four types
of turbines are tested.

typ1200
(1)

Models small-break LOCA in a typical pressurized water reactor for
1200 s.

typ_kindt
(2)

TYPPWR input model with nodal kinetics, Krylov solver, and
independent kinetics timestep.

valve (5) Models opening and closing of all valves, except relief.
varvol2
(1)

Uses the variable volume model and a general table to vary the
fluid volume of a single liquid-filled volume.

2phspum
p (1)

Tests two-phase pump head degradation as a function of void
fraction alone and as a function of void fraction and pressure.

The number of input cases in the base input deck is listed

after each test name in Table 2. All kernels are recorded in the
same verification file with the cases marked as shown in Fig. 1.
The tests run in 1 to 10 seconds on modern computer platforms
with 3 exceptions that take under one minute each.

 5 Copyright © 20xx by ASME

NULL TESTING
There are many times in the development of codes such as

RELAP5-3D that it is desired to show that code modifications
do not impact results. Examples of this are situations when
memory structure has been modified, or ensuring that new
features do not change the results of problems in which they are
not employed. The combination of the verification data files and
a comprehensive test suite provide the ability to test this
condition. To perform null testing, a reference set of solutions is
first generated. The test suite is then executed with the modified
code. If all of the verification files are the same, there is now
evidence that the changes have not inadvertently impacted the
results.

RESTART TESTING

The RELAP5-3D restart capability[6] provides a means to
continue a previous calculation from some point after input
processing concluded, possibly from the end of the previous run
or an intermediate point in the calculation. Each restart record
contains virtually all calculation parameters (E.G. pressures,
temperatures, void fractions, flow rates, etc.) for the entire
transient calculation.

Previously, users have reported that for some input models,
the code produces different calculations on restart than it does
when the code runs straight through. Acceptable restart
performance for an input deck means that a restart run from an
intermediate record of its restart file produces the same
verification kernels as the base run did, for all common
timesteps.

The purpose of restart testing is to ensure this for the tested
features. All 43 tests of the verification suite are restarted and
the restart input files are stored with the base input deck. If the
base deck is named base.i, then the restart is named base.r.i and
the verification file is base.r.vrf. If more than one input case
exists, then the restart files it produces are named base_1.r,
base_2.r, etc. and base.r.i uses them to run the multiple restart
cases[6], but all verification kernels are written to base.r.vrf.

Like with null testing (version-to-version comparison) all
identification data is ignored when comparing base and restart
verification files. The test fails for a given input model if
differences are found. The process ensures that all verification
kernels occur after the restart time, to prevent false differences
from being found.

Table 3 Issues Found and Fixed via New Verification
Description Found Fixed
Restart issues 10 5
Restart issue w/ final bit of cumulative time (5) (0)
Backup issues 27 17
Total Issues 37 22

The new verification capability revealed 10 restart issues.

Five have been resolved. The remaining five have been tracked

to a difference in the final bit of cumulative time between the
restart file and internal memory. Table 3 summarizes this.

BACKUP TESTING

A RELAP5-3D time-step backup occurs when the code
detects and improper solution has been obtained. For these
conditions, the solution is reset to the values at the end of the
last successful advancement and the time-step is repeated, often
with a modified logic path, with either the same or reduced
time-step size.

Backup testing checks that the code can correctly repeat
any given advancement at the same time-step size. The process
artificially induces a backup, as directed from code input, by
setting set one of the code’s three backup condition[7, 8, 9] flags
on one or more advancements. The process ensures that the
same time-step size is used on the repeated time-step. The code
must produce the same calculations on both attempted
advancements. Since this capability is used in all applications, it
is important to ensure that the code results are not impacted
through imperfect backup logic.

To examine the backup capability, two runs are made. One
uses the original deck of a given input model and the second
uses a copy of that deck with forced backup. However, not all
advancements stress the code equally. Which one is the best for
revealing backup errors?

Since code updates can cause some phenomena to occur at
different times, or to take a different number of advancements
to reach the same point in time, constant resetting of the backup
time would be required for some input models as the code is
developed. A better solution is to force a backup on every
successful advancement (except the first because it lacks certain
old-time values that must be restored on a backup) to create a
thorough and non-changing backup test. This can be invoked
via input with the keyword “backall”.

Backall produces a verification kernel only on the final
advancement, otherwise the verification file would reach the
1MB limit for many tests.

Two copies of the base input deck, base.i, are made for
backup testing. The first, base.b.i, performs the base run but
writes a kernel only for the final advancement. The second,
base.bk.i, runs with the backall option. Building these decks
from base.i every time backup testing is performed ensures that
the base and backup decks match perfectly, even if the base
deck is modified. Before comparing the verification files,
base.b.vrf and base.bk.vrf, the line with repeat counts is
removed because the forced backups change them artificially.

The backup testing has indentified that 27 of the
verification problems did not pass the rigorous backup testing,
see Table 3. Of these, 17 have been resolved. Work is ongoing
to resolve the final 10.

PROGRAMMING AND AUTOMATION

The verification coding is largely separated from the rest of
the source code in RELAP5-3D. Most of the verification

6 Copyright © 20xx by ASME

subprograms, along with their new data and documentation, are
stored in a new module. This isolates the new coding; thus it
reduces the chance of introducing errors when adding new code.
Very few statements need to be inserted into the existing
RELAP5-3D code to access this data and these routines. This
approach makes it is easier to port the verification coding to
older versions of RELAP5-3D and would aid in its adaptation
to other Fortran programs.

However, not all the new coding is in the module. In some
existing subroutines, such as the 199-card processor, internal
subprograms that provide verification-specific capability were
written. Also, two new standalone subroutines were written.
These routines access data of several different modules so that
including them in the new verification module would subvert
the goal if isolating new code.

The method is invoked through a system of Makefiles on
either a Linux platform or a properly equipped Windows PC.
The user must first identify the locations of the RELAP5-3D
distribution, the verification test suite, and directory for the
output verification files in an auxiliary file. The user then issues
a command that invokes the Makefile with one of four major
options: null test, restart test, backup test, or all tests.

The Makefile runs all requested tests, put the verification
files in the target directory, and compares them to previous
verification files if they exist. If everything compares exactly,
the Makefile reports the single word: verified. If there are
differences, it reports that and lists the test problems that did not
compare. If all tests are run, it categorizes the failures in the
report. This system was used in creating Table 3.

The automated system employs two Makefiles. They
perform the tasks explained above and provide other functions.
For example, the system builds the backup input files, links
fluid property files and RELAP5-3D executable program to
each test directory, renames existing verification files at the
target location as backup files with the ‘bak’ extension before
comparison, and performs a variety of cleaning operations.

STATISTICAL ANAYLSIS
The verification testing developed above is a form of

hypothesis testing and can be analyzed statistically. The null
hypothesis of the test, H0, is: “The two runs produce exactly the
same calculations.” The alternate hypothesis is that “the
calculations are different.” The statistic used to test the
hypothesis for the ith test case, Xi, has a value of 0 if no
differences are found between the two runs. It is 1 otherwise, no
matter how many differences occur. When there are N test
cases, then Xi is defined for each test case, i, and X is the
maximum. Applying standard statistical methods[10], this can be
expressed mathematically as:

Xi = (1.1.1)

X = max {Xi | i = 1, 2, …, N} (1.1.2)

H0: The two runs have identical calculations

Test V: Accept H0 if X = 0, but reject it if X = 1.
Hypothesis testing potentially commits two kinds of errors.

Type I Error or false positive, is the rejection of H0 when it is
true, in other words, finding a difference when there are none.
The probability of Type I Error is denoted and is called the
level of significance of the test. Type II Error or a false
negative, is accepting H0 when it is false. That means there are
differences that go undiscovered. It has probability .

 = P(Reject H0 | H0 is true) = P(Type I error)

 = P(Accept H0 | H0 is false) = P(Type II error)

This is summarized in Table 4.

Table 4 Hypothesis Testing Table

 H0 is true
No differences exist

A0 is true
Differences exist

Accept H0 Correct
Report: “Verified”

Type II Error
Fail to find actual
differences

Reject H0 Type I Error
Falsely find differences

Correct
Report: “Differences
have been found”

Analysis shows that Test V has good properties.

Theorem: Test V always accepts the null hypothesis when it is
true.
Proof: Suppose H0 is true. There are no differences to detect, so
for each test in the suite, Xi = 0. Therefore,
X = max {Xi} = 0 always (when H0 is true). Thus,
P(Accept H0 | H0 is true) = P(X = 0 | H0 is true) = 1.

This only applies if the test is properly programmed.

Corollary: The test never commits Type I Error. It has
significance level, = 0.

Note that these two results apply to all three kinds of testing
presented here: null, restart, and backup.

Regarding Type II error, is less than 10-32 for primary and
secondary variables for any single test problem, but Test V may
miss errors in output-only quantities. Used in conjunction with
the diffem utility described in the introduction, the combined
method detects all differences to the accuracy of the printed
output file, so is approximately 10-5. Since the power of a
statistical test is 1- , the combined method is a very powerful
test of a single input problem.

 7 Copyright © 20xx by ASME

SUMMARY
A highly accurate, automated testing system has been

implemented for RELAP5-3D verification. It employs a set of
input problems, called the verification test suite, that cover the
important code features for nuclear power plant modeling. It
writes a small, extremely accurate verification file of L1 norms
of primary variables to detect differences in the first 32
significant digits. It can be used for null testing and extends the
original scope of verification to restart and backup testing. The
method is very powerful and can be applied to many other
computer programs.

REFERENCES
1. The RELAP5-3D Code Development Team, “RELAP5-3D

Code Manual Volume I: Code Structure, System Models
and Solution Methods,” INL-EXT-98-00834-V1, Revision
4.0, Section 8.2, p 8-4, June, 2012.

2. D. L. Aumiller, et al, “Development of Verification Testing
Capabilities for Safety Codes,” The 15th International
Topical Meeting on Nuclear Reactor Thermal - Hydraulics,
NURETH-15, Pisa, Italy, May 12-17, 2013.

3. The RELAP5-3D Code Development Team, “RELAP5-3D
Code Manual Volume III: Developmental Assessment,”
INL-EXT-98-00834-V1, Revision 4.0, Section 8.2, p 8-4,
June, 2012.

4. W. Kahan “IEEE Standard 754 for Binary Floating-Point
Arithmetic,” Elect. Eng. & Computer Science, Univ. of
California, Berkeley CA 94720-1776, p4, October, 1997.

5. G. L. Mesina, “Reformulation RELAP5-3D in FORTRAN
95 and Results,” Proceedings of the ASME 2010 Joint US-
European Fluids Engineering Summer Meeting and 8th
International Conference on Nanochannels Microchannels,
and Minichannels, FEDSM2010-ICNMM2010, Montreal,
Quebec, Canada, Aug 1-5, 2010.

6. The RELAP5-3D Code Development Team, RELAP5-3D
Code Manual Volume V: User’s Guidelines, INEEL-EXT-
98-00834, Revision 4.0, Section 4.1.2, pp. 4-2, Idaho
National Laboratory, PO Box 1625, Idaho Falls, Idaho
83415, June, 2012.

7. The RELAP5-3D Code Development Team, RELAP5-3D
Code Manual Volume II: User’s Guide and Input
Requirements, INEEL-EXT-98-00834, Revision 4.0,
Section 8.7, pp. 8-31 to 8-34, Idaho National Laboratory,
PO Box 1625, Idaho Falls, Idaho 83415, June, 2012.

8. The RELAP5-3D Code Development Team, “RELAP5-3D
Code Manual Volume I: Code Structure, System Models
and Solution Methods,” INL-EXT-98-00834-V1, Revision
4.0, Section 8.2, pp. 8-3 to 8-4, June, 2012.

9. The RELAP5-3D Code Development Team, “RELAP5-3D
Code Manual Volume I: Code Structure, System Models
and Solution Methods,” INL-EXT-98-00834-V1, Revision
4.0, Section 3.4, pp. 3-271 to 3-274, June, 2012.

10. V. K Rohatgi, An Introduction to Probability Theory and
Mathematical Statistics, Second Edition, ISBN-10: 0-471-
34846-5, John Wiley & Sons, Inc., NY, Oct 2000.

